886.Possible Bipartition¶
Tags: Medium Depth-first Search
Links: https://leetcode.com/problems/possible-bipartition/
Given a set of N people (numbered 1, 2, ..., N), we would like to split everyone into two groups of any size.
Each person may dislike some other people, and they should not go into the same group.
Formally, if dislikes[i] = [a, b], it means it is not allowed to put the people numbered a and b into the same group.
Return true if and only if it is possible to split everyone into two groups in this way.
Example 1:
Input: N = 4, dislikes = [[1,2],[1,3],[2,4]]
Output: true
Explanation: group1 [1,4], group2 [2,3]
Example 2:
Input: N = 3, dislikes = [[1,2],[1,3],[2,3]]
Output: false
Example 3:
Input: N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
Output: false
Note:
1 <= N <= 20000 <= dislikes.length <= 100001 <= dislikes[i][j] <= Ndislikes[i][0] < dislikes[i][1]- There does not exist
i != jfor whichdislikes[i] == dislikes[j].
class Solution {
vector<vector<int>> denseGraph;
vector<int> color;
int n;
public:
bool possibleBipartition(int N, vector<vector<int>>& dislikes) {
std::ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
denseGraph.resize(N + 1, vector<int>(N + 1, 0));
color.resize(N + 1, -1);
n = N;
for (auto & e : dislikes) {
denseGraph[e[0]][e[1]] = 1;
denseGraph[e[1]][e[0]] = 1;
}
bool flag = true;
for (int i = 1; i <= N; ++i) {
if (color[i] == -1) { //第i个点还没有被染色
if (!DFS(i, 0)) { flag = false; break; }
}
}
return flag;
}
bool DFS(int v, int c)
{
color[v] = (c + 1) % 2;
for (int i = 1; i <= n; ++i) {
if (denseGraph[v][i]) {
if (color[i] == -1) {
if (!DFS(i, color[v])) return false;
}
else if (color[i] != c) return false;
}
}
return true;
}
};
二部图染色问题。